Inductive Logic Boosting

نویسندگان

  • Wang-Zhou Dai
  • Zhi-Hua Zhou
چکیده

Recent years have seen a surge of interest in Probabilistic Logic Programming (PLP) and Statistical Relational Learning (SRL) models that combine logic with probabilities. Structure learning of these systems is an intersection area of Inductive Logic Programming (ILP) and statistical learning (SL). However, ILP cannot deal with probabilities, SL cannot model relational hypothesis. The biggest challenge of integrating these two machine learning frameworks is how to estimate the probability of a logic clause only from the observation of grounded logic atoms. Many current methods models a joint probability by representing clause as graphical model and literals as vertices in it. This model is still too complicate and only can be approximate by pseudolikelihood. We propose Inductive Logic Boosting framework to transform the relational dataset into a feature-based dataset, induces logic rules by boosting Problog Rule Trees and relaxes the independence constraint of pseudo-likelihood. Experimental evaluation on benchmark datasets demonstrates that the AUC-PR and AUC-ROC value of ILP learned rules are higher than current state-of-the-art SRL methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting Descriptive ILP for Predictive Learning in Bioinformatics

Boosting is an established propositional learning method to promote the predictive accuracy of weak learning algorithms, and has achieved much empirical success. However, there have been relatively few efforts to apply boosting to Inductive Logic Programming (ILP) approaches. We investigate the use of boosting descriptive ILP systems, by proposing a novel algorithm for generating classification...

متن کامل

Boosting Descriptive ILP for Predictive Learning

Inductive Logic Programming has been very successful in application to multirelational predictive tasks. Sophisticated predictive ILP systems, such as Progol and foil, can achieve high predictive accuracy, while the learning results remain understandable. Although boosting [1] is an established method to promote predictive accuracy of weak algorithms, there have been relatively few efforts to a...

متن کامل

Learning First Order Logic Time Series Classifiers

A method for learning multivariate time series classifiers by inductive logic programming is presented. Two types of background predicate that are suited for this task are introduced: interval based predicates, such as “always”, and distance based, such as the euclidean distance. Special purpose techniques are presented that allow these predicates to be handled efficiently when performing top-d...

متن کامل

Ensemble Methods for Noise Elimination in Classification Problems

Ensemble methods combine a set of classifiers to construct a new classifier that is (often) more accurate than any of its component classifiers. In this paper, we use ensemble methods to identify noisy training examples. More precisely, we consider the problem of mislabeled training examples in classification tasks, and address this problem by pre-processing the training set, i.e. by identifyin...

متن کامل

A 10 Gb/s Equalizer in 0.18μm CMOS Technology for High-speed SerDes

A 10 Gb/s equalizer consisting of analog equalizer and two-tap halfrate decision feedback equalizer (DFE) in a 0.18μm CMOS has been designer. By employing capacitive degeneration and inductive peaking techniques, the analog equalizer achieves large boosting. The pipelined half-rate architecture is used to improve the transmitted data rate in DFE with a small increase in area. Measurement result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1402.6077  شماره 

صفحات  -

تاریخ انتشار 2014